library(knitr)
library(nimble)
library(sde)
library(ggplot2)
library(tidyr)
opts_chunk$set(dev = 'png',
fig.width = 5,
fig.height = 5,
results = 'hide')
Stick with SDE example as a reference point:
set.seed(123)
d <- expression(0.5 * (10-x))
s <- expression(1)
data <- as.data.frame(sde.sim(X0=6,drift=d, sigma=s, T=20, N=100))
sigma.x not provided, attempting symbolic derivation.
ggplot(data) + geom_line(aes(seq_along(x),x))
N <- length(data$x)
LSN version
Modify the LSN model to explicitly model the changing parameter as a hidden, stochastic variable
lsn <- nimbleCode({
theta ~ dunif(1e-10, 100.0)
sigma_x ~ dunif(1e-10, 100.0)
sigma_y ~ dunif(1e-10, 100.0)
m ~ dunif(-1e2, 1e2)
x[1] ~ dunif(0, 100)
y[1] ~ dunif(0, 100)
for(i in 1:(N-1)){
mu_x[i] <- x[i] + y[i] * (theta - x[i])
x[i+1] ~ dnorm(mu_x[i], sd = sigma_x)
mu_y[i] <- y[i] + m * t[i]
y[i+1] ~ dnorm(mu_y[i], sd = sigma_y)
}
})
Constants in the model definition are the length of the dataset, \(N\) and the time points of the sample. Note we’ve made time explicit, we’ll assume uniform spacing here.
constants <- list(N = N, t = 1:N)
Initial values for the parameters
inits <- list(theta = 6, m = 0, sigma_x = 1, sigma_y = 1, y = rep(1,N))
and here we go:
Rmodel <- nimbleModel(code = lsn,
constants = constants,
data = data,
inits = inits)
Cmodel <- compileNimble(Rmodel)
mcmcspec <- configureMCMC(Rmodel, print=TRUE,thin=2e2)
Rmcmc <- buildMCMC(mcmcspec)
Cmcmc <- compileNimble(Rmcmc, project = Cmodel)
Cmcmc$run(1e6)
NULL
and examine results
samples <- as.data.frame(as.matrix(Cmcmc$mvSamples))
dim(samples)
[1] 5000 206
samples <- samples[,1:4]
long <- gather(samples)
apply(samples, 2, mean)
m sigma_x sigma_y theta
-1.675333e-05 3.875174e-01 4.066872e-02 1.022867e+01
ggplot(long) +
geom_line(aes(seq_along(value), value)) +
facet_wrap(~key, scale='free')
ggplot(long) +
geom_density(aes(value)) +
facet_wrap(~key, scale='free')
sessionInfo()
R version 3.1.3 RC (2015-03-06 r67947)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 8 (jessie)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 splines methods stats graphics grDevices
[7] utils datasets base
other attached packages:
[1] tidyr_0.2.0 ggplot2_1.0.0 sde_2.0.13 zoo_1.7-11
[5] fda_2.4.4 Matrix_1.1-5 MASS_7.3-39 nimble_0.3-1
[9] yaml_2.1.13 knitr_1.9
loaded via a namespace (and not attached):
[1] codetools_0.2-11 colorspace_1.2-6 digest_0.6.8
[4] evaluate_0.5.5 formatR_1.0 grid_3.1.3
[7] gtable_0.1.2 igraph_0.7.1 labeling_0.3
[10] lattice_0.20-30 munsell_0.4.2 plyr_1.8.1
[13] proto_0.3-10 Rcpp_0.11.5 reshape2_1.4.1
[16] scales_0.2.4 stringr_0.6.2 tools_3.1.3