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In the study of Boettiger & Hastings [1], we demonstrated that conditioning

on observing a purely stochastic transition from one stable basin to another

could generate time-series trajectories that could be mistaken for an early

warning signal of a critical transition (such as might be due to a fold bifur-

cation [2]), when instead the shift is merely due to chance. While the goal

was to highlight a potential danger in mining historical records for patterns

showing sudden shifts when seeking to test early warning techniques,

Drake [3] draws attention to a potentially more interesting consequence of

our analysis. Drake argues that the bias observed could be used to forecast

purely stochastic transitions—a task previously thought to be impossible [4].

We feel this interpretation is too generous. The pattern Drake points to

arises in any large deviation, regardless of whether a system is or is not at

elevated risk for a transition. We illustrate this pattern in systems with and

without bistability, demonstrating that early warning signals do not exist

for purely stochastic transitions.

Here, we provide a numerical demonstration that the pattern in question for

consideration of an early warning signal appears not only before purely sto-

chastic transitions (as seen in [1]) but also during any large deviation. As

large deviations can occur even in stochastic systems that have only a single

stable point, these patterns cannot be considered indicators of stochastic tran-

sitions. We demonstrate this in two scenarios: first using the Allee model of

alternative stable states considered in [1], (eqn 2.1–2.2 and fig. 2), and then in

a simple Ornstein–Uhlenbeck (OU) model, which has only a single stable

state. Rather than condition on a stochastic transition having occurred (as in

[1]), we now condition on having merely observed a sufficiently large deviation

(larger deviations will be rarer and show a more pronounced pattern). We pick

values such that we obtain a sample of a few hundred large deviation events in

a sample of

20 000 replicates.

The OU model is defined by a stochastic differential equation in which there

is only a single optimum whose strength is proportional to the displacement,

dXt ¼ �aXtdtþ sdBt;

where the state Xt oscillates around a stable point (at zero in these arbitrary

units), driven by Brownian noise dBt of intensity s and restorative force a.

The analysis for each model proceeds exactly as in [1]: for each model, we

generate 20 000 replicate time series. We condition upon only those experiencing

a deviation of size L (X � 250 in the Allee model and X � 24 in the OU model).

For the sequence of observations immediately leading up to the large deviation,

we compute the warning signals of variance and autocorrelation over a sliding

window of half the length of the time series, and we summarize the increasing

or the decreasing trend observed in the variance and autocorrelation using

Kendall’s t rank correlation coefficient (all following the method for early
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Figure 1. Histogram shows the frequency the correlation statistic t observed for each warning signal (variance, autocorrelation coefficient) on the large deviation
samples from each model. Background distribution of all samples show by smooth line (kernel density estimate). More positive values of t are supposed to indicate
a rising indicator which can be a signal of an approaching transition [2]. The OU model uses a ¼ 5, s ¼ 3.5, t [ (0,10), 2000 replicates, 20 000 sample points
each. Conditionally selected trajectories experiencing a deviation of at least 24, and analysed the 1500 data points prior to the threshold to determine a warning
signal ( following [5]). Code and data available in the Dryad repository: http://dx.doi.org/10.5061/dryad.1dj62.
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warning indicators outlined in [5]). We repeat this analysis on

the entire set of time series under each model to obtain null

distributions for the t statistic.

We find (figure 1) that t is significantly skewed towards

positive values when conditioning on large deviations in

both models. This demonstrates that it is the presence of

the large deviation, not the presence of the stochastic tran-

sition we condition on in the study of Boettiger & Hastings

[1], that is responsible for this pattern ( just as we claimed

without example then).

Observing the bias shown in the figures here depends on

having a rapid enough sample frequency to capture the

escape trajectory and a long enough trajectory for the statistic

to demonstrate an increase over time. Since large deviations

owing to stochastic forces alone must be fast, so must be

the accompanying warning signal and management response

(which will show up on the timescale of the perturbation).

Note that fast relative to the system dynamics may or may

not be fast relative to the timescale of management ( just as

with bifurcation-driven warning signals [6]). The wider null

distribution in the OU model results from the sample

window being shorter relative to the system timescale.

One might consider this a corollary of the Prosecutor’s

Fallacy we originally presented, which demonstrated that

examples of sudden transitions historically selected from the

literature could be mistaken for positive evidence of early

warning signals when they were in fact owing to purely

stochastic transitions. Here, we have seen how any large

deviation could be similarly misleading, whether or not it

results in a stochastic transition to an alternative stable state.

From a classical result of the large deviation theory, one can

gain considerable intuition about why these chance deviations

show much higher variance and autocorrelation than expected
from the stationary distribution of a stable point. Though large

deviations are rare—the time we must wait to observe a devi-

ation of size L in the system above scales as exp (L2/s2) (the

familiar Arrhenius relationship), when they occur it is very

rapid. The expected time for an excursion to a distant point L
that does not again cross the stable point before reaching L
scales as log (L/s), just as a trajectory returning down the gra-

dient of the attractor from L to the stable point (proofs [7] or

[8]). While most trajectories in the stationary distribution take

steps in each direction with equal probability, these large

deviations moving rapidly to the boundary will consequently

show a greater autocorrelation. In achieving a much greater

deviation than typically observed, these trajectories will also

show an increase in variance, as observed. That such trajec-

tories appear to be pulled in the direction of their escape

rather than climbing away against a restorative force has led

to confusion before. Lande [8] argues how this shows a ‘punc-

tuated equilibrium’ pattern of stasis followed by rapid change

that could arise entirely from small steps, and Drake & Griffen

[9] empirically demonstrate this phenomenon in the trajectories

of local population extinctions.

In conclusion, we heartily agree with the need for a

decision-theoretic approach to early warning signal questions

[10]. Central to a decision-theoretic approach is the enumerat-

ing alternative scenarios that are possible given the observed

data. We have highlighted how purely stochastic transitions

and large deviations are such possibilities. The challenge of

sufficient or unique early warning indicators is not limi-

ted to stochastic shifts, but includes the more typical critical

transitions. For instance, rising variance or autocorrelation

patterns typical of fold bifurcations can be observed in

more benign bifurcations or smooth transitions [11]. Early

warning signals may offer a promising technique that
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will one day allow us to avoid seemingly unpredictable cata-

strophes—but we must not lose sight of just how difficult are

the challenges involved. A key step here and for early warn-

ing indicators more generally is to understand these other

circumstances in which they can arise that we may then

develop ways to eliminate those possibilities. Though we

may never be able to detect purely stochastic transitions,
perhaps these approaches in this discussion may lead to

more unique and sufficient indicators for true critical

transitions.
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