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Abstract The realization that complex systems such as
ecological communities can collapse or shift regimes sud-
denly and without rapid external forcing poses a serious
challenge to our understanding and management of the nat-
ural world. The potential to identify early warning signals
that would allow researchers and managers to predict such
events before they happen has therefore been an invaluable
discovery that offers a way forward in spite of such seem-
ingly unpredictable behavior. Research into early warning
signals has demonstrated that it is possible to define and
detect such early warning signals in advance of a transition
in certain contexts. Here, we describe the pattern emerging
as research continues to explore just how far we can gener-
alize these results. A core of examples emerges that shares
three properties: the phenomenon of rapid regime shifts, a
pattern of “critical slowing down” that can be used to detect
the approaching shift, and a mechanism of bifurcation driv-
ing the sudden change. As research has expanded beyond
these core examples, it is becoming clear that not all sys-
tems that show regime shifts exhibit critical slowing down,
or vice versa. Even when systems exhibit critical slowing
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down, statistical detection is a challenge. We review the
literature that explores these edge cases and highlight the
need for (a) new early warning behaviors that can be used
in cases where rapid shifts do not exhibit critical slowing
down; (b) the development of methods to identify which
behavior might be an appropriate signal when encountering
a novel system, bearing in mind that a positive indication for
some systems is a negative indication in others; and (c) sta-
tistical methods that can distinguish between signatures of
early warning behaviors and noise.

Keywords Early warning signals · Regime shifts ·
Bifurcation · Critical slowing down

Introduction

Many natural systems exhibit regime shifts—rapid changes
in the state and conditions of system behavior. Examples
of such shifts include lake eutrophication (Carpenter et al.
1999), algal overgrowth of coral systems (Mumby et al.
2007), fishery collapse (Jackson et al. 2001), desertification
of grasslands (Kéfi et al. 2007), and rapid changes in climate
(Dakos et al. 2008; Lenton et al. 2009). Such dramatic shifts
have the potential to impact ecosystem health and human
well-being. Thus, it is important to develop strategies for
adaptation, mitigation, and avoidance of such shifts.

The idea that complex systems such as ecosystems could
change suddenly and without warning goes back to the
1960s (Lewontin 1969; Holling 1973; May 1977). Such
early work revealed that even simple models with the appro-
priate nonlinearities were capable of unpredictable behav-
ior. The only way to predict the transition was to have
the right model—and that meant having already had the
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chance to observe the transition. One cogent early example
(Ludwig et al. 1978) demonstrated how knowledge of the
forms and time scales of interactions among insects, birds,
and trees could lead to a qualitative model that essentially
predicted the possibility of regime shifts.

Management of systems that could potentially undergo
shifts requires balancing the costs of adaptation, mitigation,
or avoidance against the costs of the shift itself. Avoidance
depends on an ability to predict regime shifts in advance, or
depending on the time scale of response and response of the
system, on the ability to recognize a shift as it is occurring.
Adaptation and mitigation might require an ability to predict
a shift in advance if the time scale of implementation is long
relative to the rate at which damages occur.

An important component of this management challenge
is the development of early warning signals (EWS) of
impending rapid regime shifts (Scheffer et al. 2009). Since
regime shifts occur in a variety of systems, and underlying
mechanisms for the shifts are not always known, the devel-
opment of generic signals applicable to a variety of systems
would be particularly valuable. This naturally leads to the
questions of when such generic signals would be valuable
tools versus the need to develop system-specific approaches
in all cases.

Foundational research in EWS identified certain patterns
that may forecast a sudden transition in a wide variety of
systems (Scheffer et al. 2009). Most extensively researched
is the phenomenon of critical slowing down (CSD), which
is manifested as a pattern of increasing variance or auto-
correlation of a system. Subsequent work has begun to
identify a growing library of cases in which these indi-
cators are not present before a transition (Schreiber 2003;
Schreiber and Rudolf 2008; Hastings and Wysham 2010;
Bel et al. 2012) or are observed in the absence of any tran-
sition (Kéfi et al. 2012). These examples are distinct from
the more well-known case of statistical error—such as a
signal that is present, but too weak to detect due to insu-
fficient available data (see Dakos et al. (2008), Scheffer
et al. (2009), and Perretti and Munch (2012)). Instead,
such work moves into new territory where different under-
lying mechanisms have lead to starkly different patterns.
Determining which underlying mechanisms are present is
a substantial empirical and theoretical challenge. When
does critical slowing down correspond to the assumptions
made?

Here, we review a variety of mechanisms that may lead
to rapid (or “catastrophic”) regime shifts in ecological sys-
tems, as well as mechanisms that generate early warning
signals. We focus on CSD and its manifestations as they are
the most commonly studied warning signals. We illustrate
that not all rapid shifts exhibit CSD and not all observations
of CSD involve rapid shifts. Thus, the issue of determining

EWS is really twofold: first, to identify classes of sys-
tems where the warning signal is expected and conversely
systems that may undergo shifts without such signals and
second, to determine appropriate statistical tools to detect
the warning signal. In this paper, we review both aspects of
the overall question.

Critical slowing A system’s slowing response to
down (CSD) perturbations as its dominant

eigenvalue approaches zero,
often expressed in greater
variance, autocorrelation, and
return time. CSD is one
possible EWS

Early warning A general term for dynamic
signals (EWS) patterns in system behavior

that precede regime shifts.
Though CSD phenomena are
among the best studied EWS,
some shifts will require
alternative signals (Fig. 1)

Definitions In this paper, we refer to two closely related, but
different phenomena.

Relationships between critical slowing down,
bifurcations, and regime shifts

CSD has been studied extensively in theoretical (Wissel
1984; Gandhi et al. 1998; Carpenter and Brock 2006;
Hastings and Wysham 2010; Dakos et al. 2011a; Lade and
Gross 2012; Boettiger and Hastings 2012a, b) and empiri-
cal contexts (Drake and Griffen 2010; Carpenter et al. 2011;
Veraart et al. 2012; Dai et al. 2012; Wang et al. 2012) as
a potential EWS for regime shifts. CSD occurs as a sys-
tem’s dominant eigenvalue approaches zero due to a chang-
ing (possibly deteriorating) environment. As the eigenvalue
approaches zero, the system’s response to small perturba-
tions slows. This change in dynamic properties of a system
can be expressed in greater variance, autocorrelation, and
return time of observed state variables.

In Fig. 1, we illustrate the domains of overlap between
three distinct phenomena. The first, rapid regime shifts, is
abrupt changes in system behavior. The second, bifurca-
tions, is qualitative changes in system behavior due to the
passing of a threshold in underlying parameters or con-
ditions. Where these two overlap, we sometimes call the
phenomenon a “catastrophic bifurcation.” Finally, critical
slowing down is the observed behavior of slow system
response to perturbation. The labels in italics describe
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Fig. 1 Venn diagram representing the intersecting domains of rapid
regime shifts, bifurcations, and critical slowing down. Labels in italic
are example phenomena that occur in each domain. Roman numerals
and example literature (right) exploring each domain are indicated.
Refer to sections below for the description of those domains. Each dot
represents a study in the domain. Studies and dots in gray represent

literature not explicitly testing EWS, but which demonstrate phenom-
ena related to EWS. The center domain (I), where all three phenomena
intersect, is the most extensively researched domain of the early
warning signal field. Literature outside this charted research is less
extensive, but hints at how existing signals based on CSD may be
insufficient or misleading

examples of phenomena that fall into these various domains.
Below, we describe cases that fall into each of these regions.

Catastrophic bifurcations preceded by CSD (I)

Much of the (most visible) recent research in EWS has focu-
sed on the center of the diagram, where all three concepts
intersect. The warning signal patterns postulated, such as
increasing variance and coefficient of variation, (Carpenter
and Brock 2006), increasing autocorrelation (Dakos et al.
2008), and increasing skewness (Guttal and Jayaprakash
2008b), can all be directly derived from the changing
eigenvalue in a saddle-node (also called fold) bifurcation.
Consequently, experimental evaluations of warning signals
have largely focused on this situation as well. CSD has fre-
quently been studied in the context of models exhibiting
saddle-node bifurcations.

Dai et al. (2012) studied yeast cell growth in a microcosm
and demonstrated that an Allee effect created a saddle-
node bifurcation in the system. When the cell density was
reduced to levels near the bifurcation point, a decrease
in recovery time (increase in variance and autocorrelation
over time) was observed. Veraart et al. (2012) studied a
system of cyanobacteria where models suggest a saddle-
node bifurcation driven by light inhibition. They also found
increases in autocorrelation and decreased recovery rates
as the system approached the bifurcation. These important

experiments are among the best demonstrations that saddle-
node bifurcation dynamics really occur in natural systems
and can be accompanied by reliable detection of EWS, at
least when sufficient data sampling, replicates, and controls
are available.

Carpenter et al. (2011) provide a larger scale example
in which a lake ecosystem is manipulated towards a sud-
den transition through the introduction of a predator while
a neighboring experimental lake provides a control. In this
and similar lake systems, bifurcation is thought to be driven
in part by trophic interactions where adult fish prey on the
competitors of their juveniles (Carpenter and Kitchell 1996;
Walters and Kitchell 2001; Carpenter et al. 2008), which
leads to a saddle-node bifurcation. While the underlying
dynamics of a whole lake ecosystem are less tractable than
the laboratory-controlled chemoststats of microorganisms,
the system is understood well enough to anticipate that a
sudden transition can be induced under the intended manip-
ulation. Like the laboratory examples, this helps eliminate
the options outside the circle “bifurcations,” in Fig. 1. The
observed warning signals then place it in the center of the
diagram.

These studies have provided valuable demonstrations
of the potential to find early warning signals of sudden
transitions. However, this literature has begun to enumerate
examples of similar transitions in which no such signal is
present.
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Catastrophic bifurcations not preceded by CSD (II)

Saddle nodes are only one of a variety of bifurcations, which
can cause rapid changes in system dynamics. Other bifur-
cations can cause long-term changes in system dynamics
without a gradual pass through a state with zero eigenvalue
and, therefore, not exhibit CSD. Many of these examples
can in fact show patterns in typical early warning indicator
variables, such as variance or autocorrelation, that are com-
pletely opposite to the patterns seen in the saddle-node case.
Several of these examples are found outside the literature
on EWS, indicating a need to expand the range of systems
studied for EWS.

These are some of the most problematic cases. They
represent disruptive but potentially avoidable events that
would not be detected by using CSD as an EWS. These
cases include bifurcations in continuous time (Schreiber and
Rudolf 2008) and discrete time (Schreiber 2003), in explic-
itly spatial (Bel et al. 2012) and nonspatial, and in chaotic
(Schreiber 2003; Hastings and Wysham 2010) and non-
chaotic (Schreiber and Rudolf 2008; Hastings and Wysham
2010; Bel et al. 2012) examples. Before warning signals
can be reliably applied to novel systems, research must pro-
vide a way to discern if the dynamics correspond to the
better understood warning signals of the saddle-node case
or the more complex patterns such as the examples dis-
cussed here.

One class of bifurcations in which we would not expect
to see CSD prior to regime shift is sometimes known
as crises. Crises are sudden changes in the dynamics of
chaotic attractors that occur in response to small changes
in parameters (Grebogi et al. 1983). Chaotic attractors are
features of many ecological models (Hastings et al. 1993),
and chaotic behavior has been shown in some ecological
systems (Costantino et al. 1997).

Hastings and Wysham (2010) examined a continuous
model of a stochastic three-species food chain where all
species migrate between six patches. When environmental
stochasticity (represented as random variation in the carry-
ing capacity) is low, all species coexist in a chaotic but stable
attractor. A small increase in environmental stochasticity,
though, causes extinction of the top predator and rapid shift
to a nonchaotic cycle. Despite an increase in environmental
variability, neither the variance nor skew of the popula-
tions of any species changes as the system approaches this
bifurcation.

Another example of a chaotic crisis can be found in a
simple discrete-time model where a population is subjected
to strong density dependence (an Allee effect) and har-
vested by predators with a type II (saturating) functional
response (Schreiber 2003). This case is illustrated in Fig. 2.
When prey have high growth rates, the system has chaotic
dynamics. Small increases in the predation intensity cause

a bifurcation with chaotic but persistent prey populations
to prey extinction. As predation intensity increases towards
this threshold, the population exhibits decreasing variance.

Examples are not restricted to chaotic dynamics. An
example is found in Schreiber and Rudolf (2008), in which
variance is observed to decrease before a sudden transition
that results in the extinction of the population.

Another nonchaotic example is found in some spatially
extended systems that exhibit a type of bifurcation not
accompanied by CSD. In this class of models, individual
locations are subject to saddle-node-type regime shifts and
influence adjacent locations via short-range facilitation and
long-range competition. Such models are used to represent
transitions between vegetation types in response to chang-
ing water availability and to reproduce naturally occurring
vegetation patterns (Rietkerk and van de Koppel 2008). In
such systems, a regime shift in one location can propa-
gate spatially and transition the whole system from one
regime to another. Such a transition occurs if the control
parameter (e.g., rainfall) exceeds the Maxwell point—the
value at which a local disturbance propagates outwards (Bel
et al. 2012). The Maxwell point may be far from the level
at which an individual location would undergo a saddle-
node bifurcation, and thus, the system’s global dynamics
would not exhibit CSD prior to such a transition. This case
illustrates the importance of distinguishing between local
and global system dynamics and identifying the appropriate
scale of observation.

Finally, Boerlijst et al. (2013) found that indicators of
CSD do not appear prior to saddle-node bifurcations when
perturbations are not in the direction of a system’s dominant
eigenvalue, and, even then, may only appear in one variable
of the system. In their example case, increased variance and
autocorrelation only occurred when noise was applied to the
juvenile population of a model with juveniles, adults, and
predators, and it did not appear when identical noise was
applied to all three. When CSD indicators did appear, they
only did so in the juvenile population variables. This rep-
resents another under-explored area—selecting appropriate
variables for early warning detection in multivariate sys-
tems. Even where CSD is present, it may not be expressed
in all system components.

Noncatastrophic bifurcations preceded by CSD (III)

Not all regime shifts are rapid. Some systems undergo bifur-
cations between qualitatively different, but quantitatively
similar regimes. These transitions may be reversible. In a
management setting, such qualitative changes may be grad-
ual, so warning signals that detect such transitions may be
effective “false positives.”

CSD precedes several types of these noncatastrophic
bifurcations. In the subcritical form of a Hopf bifurcation,
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Fig. 2 A system where variance decreases prior to a population col-
lapse (adapted from Schreiber (2003)). In this model, prey species
with high growth rates exhibit chaotic dynamics under predation but
populations collapse when predation increases beyond a threshold
value. Left: The population level as a function of predation rate.

Mean dynamics shown as black line; realizations with varying initial
conditions shown as gray dots (see Schreiber (2003)). Middle: Vari-
ance of the prey population level. Note that it decreases as predation
rate approaches the threshold. Right: Lag-1 autocorrelation in prey
population dynamics increases as the threshold is approached

a system transitions from a stable equilibrium to a stable
cycle. As a control parameter approaches the critical thresh-
old, the system’s dominant eigenvalue approaches zero and
thus exhibits CSD (Chisholm and Filotas 2009; Kéfi et al.
2012). However, the mean value of the equilibrium does
not change dramatically, and the transition from stable equi-
librium to cycles is gradual as the cycle sizes grow from
zero at the threshold value. To appreciate how this bifur-
cation is gradual rather than catastrophic, note that in the
presence of stochasticity, the system behavior observed on
either side of the threshold may be indistinguishable: on
one side, stochasticity bounces the system around a stable
node, while on the other, it bounces the system around a
very small limit cycle in the same region of state space.
Even when oscillations grow quickly, returning the environ-
mental conditions (bifurcation parameter) to the previous
conditions restores the stable node—the bifurcation does
not exhibit the hysteresis of the saddle-node bifurcation.
Contrast this to a critical transition in which any stochastic
fluctuation across the threshold could lead to a qualitatively
different state.

The system’s eigenvalue also passes through zero in the
case of the transcritical bifurcation. The transcritical is a
degenerate case of the saddle node and occurs in many of
the same systems. However, when a system passes through
a transcritical bifurcation, the stable equilibrium transitions
smoothly from positive to zero, or the reverse. In population
systems, this corresponds to a transition from an equilibrium
of a very small population size to extinction—an impor-
tant but noncatastrophic and probably directly observable
event. CSD is observed prior to the transcritical bifurcations
(Chisholm and Filotas 2009; Kéfi et al. 2012).

An experimental example of a transcritical bifurcation
is found in Drake and Griffen (2010), where a population

of Daphnia was forced through a transcritical bifurcation
by reducing food supplies and driving population growth
rates below zero. Indicators of CSD (variation, skewness,
autocorrelation, and spatial correlation) increased prior to
collapse of the population.

CSD in the absence of bifurcations or regime shifts (IV)

Critical slowing down may appear in systems without any
bifurcations. Kéfi et al. (2012) showed that smooth transi-
tions that modify a system’s potential and decrease the value
of its dominant eigenvalue would result in longer return
times and greater variance and autocorrelation in system
behavior (see Fig. 3). When the transition between states is
smooth, these measures will exhibit a smooth increase to a
maximum and then a decrease, unlike the sharp peaks found
in systems with bifurcations. Nonetheless, both exhibit
increasing measures of CSD that may be indistinguishable.

Catastrophic regime shifts without bifurcations or CSD (V)

Some rapid regime shifts are not due to bifurcations at
all. A large external forcing (as illustrated in Fig. 4) may
change the behavior of a system without any warning. This
mechanism is commonly recognized (Scheffer et al. 2001;
2009; 2012; Barnosky et al. 2012), but others are possible.
An internal stochastic event may switch a system between
dynamic regimes, or a change in system behavior may be
the manifestation of a long-term transient. In none of these
cases would CSD be expected to precede such changes.
Nonetheless, it may be difficult to distinguish such cases
from bifurcations.

Large, rapid changes in external conditions will result in
rapid changes in ecological system dynamics. For instance,
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Fig. 3 A system where critical slowing down is observed without a
critical threshold (from Kéfi et al. (2012)). In this model, prey have
logistic growth and are subject to predation with a type III functional
response, but there is no bifurcation. Instead, average prey population
exhibits a smooth response to increased predation (grazing). Left: The

population level as a function of predation rate. Middle: Variance of the
prey population level. Right: Lag-1 autocorrelation in prey population
dynamics as grazing rate increases. Note that both indicators increase
despite the lack of a bifurcation

rapid changes in North American vegetation at the start of
the Bølling-Allerød and end of the Younger Dryas period
are thought to be responses to similarly large, rapid changes
in climate (Williams et al. 2011). Doney and Sailley (2013)
interpret a recent analysis by Di Lorenzo and Ohman (2013)
as demonstrating that what were previously thought of as
regime shifts in krill dynamics in the Pacific Ocean (Hare
and Mantua 2000) could actually be explained by a close
coupling to the external forcing of El Niño environmental
dynamics through the Pacific Decadal Oscillation. Schooler
et al. (2011) found that lakes with the invasive plant Salvinia
molesta and herbivorous weevils alternated between low-

Fig. 4 Difference between different types of perturbations. On the
horizontal axis is the bifurcation parameter, representing the state of
the environment (e.g., annual mean temperature) whose slow change
could lead to a sudden shift. A direct disturbance to the system state
(e.g., population size, vertical axis) could also cause a transition if it
is large enough to cross the stability threshold (dashed line). Such a
perturbation can come from exogenous factors such as anthropogenic
pressures or occur by chance from intrinsic stochasticity. These distinct
mechanisms of disturbance and environmental change are coupled—as
the environment deteriorates, moving the system right on the diagram,
the probability that a disturbance crosses the threshold increases. From
Bel et al. (2012)

and high-Salvinia states driven by disturbances from reg-
ular external flooding events. These examples highlight
cases that involve critical transitions between regimes under
circumstances that do not permit the discovery of early
warning signals, as CSD is not anticipated under these
mechanisms.

Internally driven stochastic perturbations may shift sys-
tems from one state to another even if underlying envi-
ronmental conditions remain the same. In such conditions,
EWS would not be expected. Hastings and Wysham (2010)
showed that in a model where one species with stochas-
tic Ricker dynamics disperses among eight patches, model
behavior can switch stochastically between wildly oscil-
latory behavior and regularly cycling regimes even while
parameters (including stochastic variability) remain the
same. Ditlevsen and Johnsen (2010) examined 25 abrupt cli-
mate changes that occurred during the last glacial period
(Dansgaard–Oeschger events) and found no evidence for
CSD in high-resolution climate data from ice cores, and
they concluded that the events were driven by endogenous
climate stochasticity rather than regime shifts (though see
Cimatoribus et al. (2013) for an alternative conclusion).

Some events that appear to be regime shifts may actually
be transients in some systems. Sudden changes in dynamics
can occur in simple ecological models with strong density
dependence, which take long times to reach equilibrium.
Hastings (1998) showed such dynamics in model of dis-
persal of inter- or subtidal organisms whose larvae disperse
along a coastline. Over the thousands of years, it takes the
model to reach equilibrium, it may alternate between tempo-
rary regimes of regular cycles and chaos that switch in only
a few years. While on long time scales these are technically
not regime shifts, such changes would effectively appear to
be regime shifts on shorter ones. We would not expect such
regime shifts to be preceded with CSD.
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Of course, stochastically driven regime shifts may occur
in systems where bifurcations are also possible, and it may
be difficult to distinguish between the two. Renne et al.
(2013), for example, suggest that ecosystems were under
near-critical stress due to climate changes just prior to the
Chicxulub meteor impact, which resulted in mass extinc-
tion. In such a case, EWS may precede the regime shift even
if it is ultimately triggered by a stochastic event.

Statistical problems in detecting early warning signals

The above cases show that behavior providing EWS before
regime shifts may only be present in certain types of eco-
logical systems (e.g., see the conditions outlined in Scheffer
et al. (2009)). An additional important consideration is
whether these behaviors will be detectable. To be usable as
EWS, system behavior must be detectable well enough in
advance of a regime shift to serve in decision making and
be reliably distinguishable from other patterns.

Ecological data are often sparse, noisy, autocorrelated,
and subject to confounding driving variables, in contrast to
much of the experimental or simulated data used to test
EWS. Under common levels of noise found in field data,
CSD-based EWS often fail (Perretti and Munch 2012).

A wide variety of statistical summary indicators have
been examined as potential detectors of CSD. The most
common are variance and autocorrelation. Others include
skewness (Guttal and Jayaprakash 2008b) and conditional
heteroscedasticity (Seekell et al. 2011). These statistics are
typically calculated on sliding windows of time series data
and tested formally or informally for trends. The rela-
tive power of these tests varies considerably with context;
no indicator has consistently outperformed others (Dakos
et al. 2011b, 2012; Lindegren et al. 2012; Perretti and
Munch 2012). Also, measuring these indicators requires
making sometimes arbitrary calculations. For instance, the
power of lag-1 autocorrelation to detect a regime shift may
be modified by changing methods of data aggregation, de-
trending, changing sliding window length, filtering signal
bandwidth (Lenton et al. 2012). These choices may be
optimized when enough calibration data are available, as
Lenton et al. (2012) were able to do with several sets of
paleoclimate data. However, such calibration may not be
possible with many ecological data sets. Multiple-method
(Lindegren et al. 2012) and composite indices (Drake and
Griffen 2010) have been proposed, but their power relative
to other indicators is unknown.

Another approach to detecting CSD has been fitting time
series data to models. Two approaches have been used for
these model-based methods. First, models may be used to
calculate summary statistics related to CSD, such as eigen-
values (Lade and Gross 2012) or diffusion terms in jump-

diffusion models (Carpenter 2011; Brock and Carpenter
2012). These statistics are then examined for trends in the
same fashion as the summary statistics above. Alternatively,
models representing both deteriorating and stable condi-
tions may be fit to the data and in order to determine which
is more likely (Dakos et al. 2012). Boettiger and Hastings
(2012b) found that likelihood ratio tests were more power-
ful than trend-based summary statistic tests across several
real and simulated ecological data sets. This approach is
also more robust than summary statistic methods to spurious
correlations that arise when collapses are driven by purely
stochastic events (Boettiger and Hastings 2012a).

Care is required in the criteria used to ju dge the power
of warning signal methods. The trade-off between false neg-
atives and false positives is a matter of not just statistical
but also economic efficiency. For instance, a large num-
ber of false positives may be acceptable if they reduce the
probability of a false warning that would result in an oth-
erwise avoidable catastrophic regime shift, and the costs of
failing to detect such a shift exceed that of the false posi-
tives. Boettiger and Hastings (2012a, b) suggest the use of
receiver-operating characteristic (ROC) curves to describe
the performance of various EWS. ROC curves (Fig. 5) rep-
resent the false-positive rate at any true positive rate. The
area under the curve (AUC) is a useful metric of over-
all performance. AUC will be one if the signal is perfect
and 0.5 if the signal performs no better than random. The

Fig. 5 Receiver-operating characteristic (ROC) curves illustrate the
trade-off between false-positive and true-positive detection rates of an
early warning signal. Perfect warning signals (solid curve) would iden-
tify all thresholds while generating no false positives, while very poor
signals would have no ability to distinguish false from true signals
(dotted line). In reality, warning signals have a trade-off between the
two, which is described by a curve (dotted line) or summarized by the
area under the ROC curve
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complete shape of the curve provides more information
on the possible trade-offs under different sensitivities. This
information, combined with a decision-theoretic frame-
work, has the potential to illuminate the cases in which EWS
can be useful.

Discussion

Recognizing the potential for early warning signals of crit-
ical transitions represents a substantial leap forward in
addressing one of the most challenging questions in ecol-
ogy and ecosystem management today. In the decades prior,
the prospect that ecosystems could make sudden transitions
into an undesirable state due to gradual, slow changes in
their environment hung like a specter over both our under-
standing and management of natural systems. Research that
points to the possibility of detecting these transitions holds
the promise of meeting this challenge and has attracted jus-
tifiably widespread attention among both theoretical and
empirical communities. Nonetheless, our understanding of
early warning signals is still in its infancy. Thus far, our best
understanding and empirical experience lies in transitions
that are driven by saddle-node bifurcations.

While saddle-node bifurcations may be common, they
represent only part of the potential mechanisms for rapid
regime shift. Occupying the center of our diagram, Fig. 1,
such transitions represent our best understood cases.
Researchers have relied on existing expertise and prior
research to identify empirical systems most likely to experi-
ence critical transitions through the saddle-node-like mech-
anism (e.g., Carpenter et al. 2011; Dai et al. 2012) and
have achieved a close match to theoretical predictions of
early warning signals. While these examples provide a much
needed proof-of-principle that these signals can be detected
in the real world, it is too early to apply the same meth-
ods to novel systems where the saddle node is only one of
many possible mechanisms. We are not yet able to deter-
mine if a natural system is likely to have a saddle-node
bifurcation without a detailed study, despite the popularity
of saddle-node models.

Thus, establishing the saddle-node mechanism is a nec-
essary condition of using CSD as a warning signal. This
can be done via manipulation in simple experimental sys-
tems (Veraart et al. 2012; Dai et al. 2012), but this is
impractical in most natural systems. Another approach is
to assume that the saddle-node mechanism applies to a
limited set of systems that have well-studied examples,
such as lakes undergoing eutrophication (Scheffer et al.
2001), lakes with “trophic triangle” cascade mechanisms
(Carpenter and Kitchell 1996; Walters and Kitchell 2001;
Carpenter et al. 2008), forest/savannah transitions (Staver
et al. 2011; Hirota et al. 2011), and rangeland transitions

(Walker 1993; Anderies et al. 2002). Fitting simplified
saddle-node models to past regime shifts (Boettiger and
Hastings 2012b) in less well-understood systems may pro-
vide evidence for the mechanism. However, care must be
taken to specify sufficient alternative models.

CSD alone cannot be used as evidence of regime shifts.
In some cases, it will be present when no transition is
approaching. In other cases, regime shifts occur without
CSD. Though false alarms and missed events can occur in
any statistical procedure, the cases discussed here demon-
strate that these errors will also arise when the underlying
dynamics do not correspond to our assumptions. These sit-
uations fall in the uncharted area beyond the center of
Fig. 1, where research has just begun to illuminate their
existence and properties. A better theoretical and empiri-
cal understanding of these cases will allow us to construct
novel warning signals that may be opposite with the patterns
observed in the familiar saddle-node bifurcations. Before
early warning signals can be applied in novel systems, addi-
tional information is needed in order to determine the best
signal to use.

One area that requires further exploration is the effect of
different forms of stochasticity on the existence of EWS and
signal detectability. Many processes contribute to stochas-
tic behavior in ecological systems, and different forms of
stochasticity have different effects on system behavior far
beyond greater variance (Melbourne and Hastings 2008).
Hastings and Wysham (2010) argued that most examples
of detectable CSD indicators were found in models with
additive stochasticity and smooth potentials. Boerlijst et al.
(2013), however, found that stochasticity had the same
effects whether it was additive or included in the popula-
tion growth rate. Instead, they found that the direction of
stochastic perturbations relative to the system’s eigenvalue
determined whether CSD indicators were detectable. The
form of stochasticity may be important in the detectabil-
ity of CSD indicators even where CSD is present, because
stochastic perturbations are needed to explore system state
space but, at the same time, they can reduce the statisti-
cal power. More work such as Perretti and Munch (2012),
which examined the role of noise color in detecting CSD,
will be useful.

Another area is understanding how the relationship
between the scale of observation and the scale of ecologi-
cal processes affects the efficacy of EWS. As shown by the
Maxwell point example in Bel et al. (2012), EWS which
detect local bifurcations may not detect global bifurcations
in system behavior. The scale of observation likely also will
affect the statistical power of EWS. Similarly, as illustrated
in Boerlijst et al. (2013), the choice of variables to observe
in multivariate systems is important, but little is known
about how to select the appropriate variable for detecting
EWS.
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The future of early warning signals lies in the uncharted
territory. For certain classes of transitions, such as stochas-
tically driven regime shifts, prediction may not be possible.
In such cases, management options include optimizing out-
comes despite the possibility of regime shifts or possibly
taking actions to reduce the long-term probability of regime
shifts, despite short-term unpredictability. Likewise, regime
shifts driven by external perturbation or strong forcing
are not predictable if the scope of management does not
include the external causes. Proper scoping of the manage-
ment problem can avoid this situation (Fischer et al. 2009;
The Resilience Alliance 2010; Polasky et al. 2011). More
research is needed in methods of distinguishing such cases
from those in which early detection may be possible.

For other classes of transitions, prediction may be pos-
sible but other EWS must be explored. Flickering (Brock
and Carpenter 2010; Wang et al. 2012), or rapid transi-
tions between states prior to a more permanent transition,
is one signal that may apply across many types of sys-
tems. It manifests in bimodality and high variance in time
series. Spatial pattern development may be a warning sig-
nal in systems with short-distance positive feedbacks and
long-distance negative feedbacks, such as grassland-desert
transitions (Rietkerk et al. 2004). Other spatial signals may
apply where systems include both saddle nodes and pos-
itive feedbacks across space (Litzow et al. 2008; Guttal
and Jayaprakash 2008a; Dakos et al. 2009, 2011b; Bailey
2010; Carpenter and Brock 2010; Bel et al. 2012). A criti-
cal task for research on EWS is to map these signals to their
domains of applicability and create methods to establish if
ecosystems fall into these domains.
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